STATISTIK
Defenisi :
Salah satu definisi menyebutkan bahwa statistik adalah metode ilmiah untuk menyusun, meringkas, menyajikan dan menganalisa data, sehingga dapat ditarik suatu kesimpulan yang benar dan dapat dibuat keputusan yang masuk akal berdasarkan data tersebut.
Jika suatu kesimpulan data sudah dihimpun, pada statistika deskriptif kita hendak menyimpulkan data itu dalam beberapa hal. Pertama kita hendak membuat tabel, misalnya tabel frekuensi, tabel frekuensi kumulatif dan lain-lain yang mengatur data kasar itu. Juga kita akan melihat diagram atau grafik yang dapat memberi gambaran mengenai keseluruhan data itu, misalnya diagram lambang (piktogram), diagram batang, diagram lingkaran, histogram, ogive dan lain-lain. Kemudian kita hendak menghitung karakteristik data yang dapat mencakup semua data itu, misalnya rata-rata, median, modus dan lain-lain.
Histogram dan Poligon :
HISTOGRAM dan POLIGON FREKUENSI adalah dua grafik yang menggambarkan distribusi frekuensi.
HISTOGRAM terdiri dari persegi panjang yang alasnya merupakan panjang kelas interval, sedangkan tingginya sama dengan frekuensi masing-masing kelas interval.
POLIGON FREKUENSI adalah suatu garis putus putus yang menghubungkan titik tengah ujung batang histogram. Biasanya ditambah dua segmen garis lain yang menghubungkan titik tengah ujung batang pertama dan terakhir dengan titik tengah kelas yang paling ujung dimana frekuensinya bernilai nol.
Ukuran Pemusatan Data :
Untuk sekelompok data yang diperoleh, yaitu x1, x2, x3, . . . . . . , x maka dapat ditentukan:
1. RATA-RATA (MEAN) (notasi: x dibaca : x bar)
Salah satu definisi menyebutkan bahwa statistik adalah metode ilmiah untuk menyusun, meringkas, menyajikan dan menganalisa data, sehingga dapat ditarik suatu kesimpulan yang benar dan dapat dibuat keputusan yang masuk akal berdasarkan data tersebut.
Jika suatu kesimpulan data sudah dihimpun, pada statistika deskriptif kita hendak menyimpulkan data itu dalam beberapa hal. Pertama kita hendak membuat tabel, misalnya tabel frekuensi, tabel frekuensi kumulatif dan lain-lain yang mengatur data kasar itu. Juga kita akan melihat diagram atau grafik yang dapat memberi gambaran mengenai keseluruhan data itu, misalnya diagram lambang (piktogram), diagram batang, diagram lingkaran, histogram, ogive dan lain-lain. Kemudian kita hendak menghitung karakteristik data yang dapat mencakup semua data itu, misalnya rata-rata, median, modus dan lain-lain.
Histogram dan Poligon :
HISTOGRAM dan POLIGON FREKUENSI adalah dua grafik yang menggambarkan distribusi frekuensi.
HISTOGRAM terdiri dari persegi panjang yang alasnya merupakan panjang kelas interval, sedangkan tingginya sama dengan frekuensi masing-masing kelas interval.
POLIGON FREKUENSI adalah suatu garis putus putus yang menghubungkan titik tengah ujung batang histogram. Biasanya ditambah dua segmen garis lain yang menghubungkan titik tengah ujung batang pertama dan terakhir dengan titik tengah kelas yang paling ujung dimana frekuensinya bernilai nol.
Ukuran Pemusatan Data :
Untuk sekelompok data yang diperoleh, yaitu x1, x2, x3, . . . . . . , x maka dapat ditentukan:
1. RATA-RATA (MEAN) (notasi: x dibaca : x bar)
_
x = (x1+x2+.....+xn)/n = å xi / n = å (fi.xi) / n dimana åfi = n
~
2. MEDIAN (notasi: x )
Adalah nilai tengah dari data yang telah diurutkan menurut besarnya.
Dengan ketentuan:
Jika banyak data ganjil, maka median adalah nilai tengah dari data yang telah diurutkan.
(Data ke (n+1)/2 )
^
3. MODUS (notasi : x)
Adalah nilai data yang sering muncul (mempunyai frekuensi terbesar). Modus dapat ada ataupun tidak ada. Kalaupun ada dapat lebih dari satu.
Contoh:
Diketahui data
7, 9, 8, 13, 12, 9, 6, 5 n = 8
1. Rata-rata
_
x = (5+6+7+8+9+9+12+13)/8 = 8,625
2.Median
Data diurutkan terlebih dahulu menjadi
5 6 7 8 9 9 12 13
~
x = (8+9)/2 = 8,5
3. Modus
^
x = 9
x = (x1+x2+.....+xn)/n = å xi / n = å (fi.xi) / n dimana åfi = n
~
2. MEDIAN (notasi: x )
Adalah nilai tengah dari data yang telah diurutkan menurut besarnya.
Dengan ketentuan:
Jika banyak data ganjil, maka median adalah nilai tengah dari data yang telah diurutkan.
(Data ke (n+1)/2 )
^
3. MODUS (notasi : x)
Adalah nilai data yang sering muncul (mempunyai frekuensi terbesar). Modus dapat ada ataupun tidak ada. Kalaupun ada dapat lebih dari satu.
Contoh:
Diketahui data
7, 9, 8, 13, 12, 9, 6, 5 n = 8
1. Rata-rata
_
x = (5+6+7+8+9+9+12+13)/8 = 8,625
2.Median
Data diurutkan terlebih dahulu menjadi
5 6 7 8 9 9 12 13
~
x = (8+9)/2 = 8,5
3. Modus
^
x = 9
No comments:
Post a Comment